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Abstract—Multi-robot systems are increasingly deployed in
scenarios where agents must balance self-interest with collective
welfare. The standard Centralized Training with Decentralized
Execution (CTDE) framework typically assumes full cooperation
between agents. While it is effective in small teams, CTDE scales
poorly and fails to capture the mixed-motive nature of many real-
world scenarios, such as autonomous driving. In evolutionary
game theory (EGT), indirect reciprocity (IR) has been proven
to be an effective mechanism to foster large-scale decentralized
cooperation in biological and social systems. The basic idea
of IR is that cooperative individuals accumulate a positive
reputation, and agents tend to cooperate with those who have
a high reputation. We propose a novel multi-agent reinforcement
learning (MARL) framework that integrates a reputation-based
IR model into independent reinforcement learning (RL) agents,
where the reputation evaluation can be either rule-based or
powered by large language models (LLMs). To validate our ap-
proach, we consider a Sequential Snowdrift Game (SSG), where
robots must decide whether to incur a personal cost to clear
snow piles for a collective benefit. Our preliminary experiments
with a straightforward rule-based reputation system show that
independent Proximal Policy Optimization (PPO) agents fail to
cooperate in such an environment. In contrast, introducing IR
fosters the emergence of cooperation. Qur findings demonstrate
the potential of IR as a scalable, self-organizing coordination
mechanism for multi-robot systems in mixed-motive scenarios,
and pave the way for developing more socially intelligent robotic
systems for real-world deployment.

Index Terms—multi-agent reinforcement learning, mixed-
motive stochastic games, indirect reciprocity, cooperation

I. INTRODUCTION

Achieving complex tasks in multi-robot systems hinges on
the coordination and cooperation of autonomous agents [1].
A popular paradigm in multi-agent reinforcement learning
(MARL) is Centralized Training with Decentralized Execution
(CTDE), where agents learn in a centralized manner but
operate independently during execution [2]. While CTDE
is effective for small teams of robots, it struggles to scale
as the number of robots grows [3]. More importantly, the
core assumption of full cooperation does not hold up in
many real-world applications. These scenarios are typically
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mixed-motive, in the sense that each robot must balance its
self-interest with the group’s welfare [4]. For instance, in
autonomous driving, each vehicle aims to minimize its own
travel time while simultaneously benefiting from the overall
smoothness of traffic flow [5]. These limitations motivate the
pursuit of decentralized learning approaches in which cooper-
ation emerges among self-interested robots without relying on
a central controller or an engineered team reward.

Originating from Darwin’s natural selection ideas, evolu-
tionary game theory (EGT) provides a powerful theoretical
framework to study large-scale cooperative behaviors [6],
[7]. Within this framework, several key mechanisms have
been identified that foster the emergence of cooperation in
social dilemmas across natural and social systems, including
direct reciprocity, indirect reciprocity (IR), and network reci-
procity [8]. For direct reciprocity, agents cooperate based on
repeated interactions with the same partners, originating from
the simple idea of “if I cooperate now, you may cooperate later.
On the other hand, IR functions on a broader, community-wide
scale. Within IR, agents’ cooperative behavior is based on the
reputation of the other agents. Helping someone builds your
own positive standing, which in turn makes it more likely that
other members of the group will help you in the future [9].
Paired with social learning, the reputation-based dynamic has
proven to be a remarkably effective and scalable mechanism
for sustaining high levels of cooperation [10].

Inspired by the game-theoretic principles, recent MARL
research has explored various mechanisms to foster coop-
eration in mixed-motive settings. A common approach is
gifting, which allows agents to directly transfer rewards to
one another [11], [12], enabling cooperative behavior to
be incentivized. Other methods have focused on embedding
psychological drivers like inequality-aversion into agents or
leveraging the technique of self-play [13], [14]. More directly
related to our work, a few studies have begun to integrate IR
into MARL systems. For example, Smit et al. incorporate the
reputation into the policy space of independent Q-learners and
find that compared to social learning, only a narrower set of
norms could lead to fair cooperation [15].
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Fig. 1. Algorithmic framework of the proposed IR-enhanced PPO

In this work, we introduce a novel framework that integrates
IR directly into the reinforcement learning process for multi-
robot systems. We treat reputation as a dynamic social layer
that governs rescaling each agent’s reward. The underlying
social norm that determines what behaviors are considered
“good” or “bad” can range from simple rule-based evalu-
ation to more sophisticated LLM-based evaluation. Such a
reputation system creates a positive feedback loop that allows
early cooperative acts to be amplified through the reputation
mechanism, thereby stabilizing cooperation. We validate our
theoretical approach in the Sequential Snowdrift Game (SSG),
in which robots must face the trade-off between the individual
cost of clearing snow piles and the collective benefit of
improving the navigability of the area. Although cooperation
collapses sharply at the beginning of the training, with the IR
mechanism, independent PPO agents can gradually restore to
full cooperation. In essence, our framework reshapes agents’
behavior to foster robust collaboration and offers a path toward
more scalable and adaptable multi-robot systems.

II. MODEL AND METHOD

A. Game Environment

The game environment is defined as an N-robot mixed-
motive stochastic game. We consider a Sequential Snowdrift
(SSG) game, in which there are a total of K randomly placed
snow piles that the robots need to clear in the H x W grid
world. The clearing of a snow pile provides a benefit b to all
robots, but incurs a personal cost ¢ (e.g., energy). The robots
can choose to clear a snow pile by moving to the same spot of
the snow pile. This setting naturally captures a social dilemma.
On one hand, any individual robot is incentivized to free-ride
by letting others incur the cost while still sharing the benefit.
On the other hand, the episode reward is 0 for all robots if no
snow pile is cleared. Therefore, the central challenge for the
agents is overcoming the selfish incentive to wait for others
to act and learning to collaborate.

As an alternative example, we use a Sequential Stag-
Hunt (SSH) game as the testbed of our framework. In this
environment, agents can hunt prey of hares and stags. A single



agent can successfully catch a hare for a small amount of
reward, while a stag yields a larger reward but requires the
coordinated effort of at least two agents, with the reward being
split equally among the catchers. This setup presents a difficult
choice between pursuing the safe strategy of hunting hares
individually and risking failure by attempting to cooperate to
hunt a stag. For independent agents, mastering the coordi-
nation for a stag hunt is already difficult, and the constant
availability of hares as an easy fallback further hinders the
learning process towards cooperation.

B. Independent PPO with IR

Our method is built on the Independent PPO algorithm, with
the key modification being the reward rescaling mechanism
driven by each agent’s reputation score [16]. Each robot
maintains a reputation score that reflects its contributions to
the shared tasks. We explore two approaches to evaluate the
reputation of the agents:

1) Rule-based evaluation: For straightforward scenarios like
the SSG, we can use a predefined rule to evaluate the
reputation of the agents. Such a rule can be as simple
as an agent earns a good reputation for the next training
batch (or the next episode) if its cooperative actions (e.g.,
the number of snow piles it clears) exceed a predefined
threshold.

2) LLM-based evaluation: For complex environments where
“cooperation” is nuanced and hard-coded rules are too
brittle, we can alternatively use an LLM-based evaluator.
In this mode, batched interaction data is structured and
passed to an LLM, which assesses each agent’s degree of
cooperation and assigns a reputation score accordingly.

We adjust each agent’s motivation using a reputation-based
reward rescaling formula, which allows an agent to dynami-
cally shift between selfish and altruistic behavior based on its
reputation. Specifically, the rescaled reward R’ for agent 7 is
computed as

Rj(r) = 3i(r)Ri + (1 - 5i(r)) > _r;R;. (1)
J#i
Here, R; is the original reward received, and r is the vector of
all agents’ reputation, with each r; being binary (0 for bad and
1 for good). The weighting term §,(r) represents the agent’s
dynamic level of selfishness, which is calculated as

gi(r):1—%z7~j. )
J#i
The hyperparameter s controls the agents’ baseline level of
selfishness. The formula generalizes the reward exchange
mechanism proposed by Willis et al. (2025), in the sense that
our model reduces to in the special case where all agents are
considered to have good reputations [17].

III. EXPERIMENTS

We conduct preliminary experiments in SSG to evaluate the
effectiveness of the proposed IR mechanism. The environment
was configured with 5 snowpile, 4 PPO agents with baseline

selfishness set to s = 1. We compared our IR-enhanced
agents against a standard Independent PPO baseline. The mean
episodic reward (solid line) along with the standard deviation
(shaded area) across 5 runs is shown in Figure 2.
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Fig. 2. Learning curve of the independent PPO with and without IR in SSG

Without IR, PPO agents fail to cooperate, with average
rewards remaining below the random baseline. By contrast,
IR acts as a bootstrap catalyst for collaboration, as occasional
snow pile clearing by chance builds reputations, prompting
other agents to align with high-reputation peers, which in
turn reinforces cooperative behavior. This positive feedback
loop steadily raises both reputation and cooperation levels and
drives the average reward close to the theoretical maximum
when all snow piles are cleared. Notably, the average re-
ward initially declines, as agents discover that deferring snow
clearing to others yields short-term gains. While independent
PPO alone struggles to recover from this collapse, the IR
mechanism facilitates the gradual build-up of positive repu-
tations, thereby enabling agents to quickly reach and sustain
full cooperation.

IV. CONCLUSION AND DISCUSSION

We proposed an IR-enhanced MARL framework that dy-
namically updates the cooperative relationships among agents
through reputation. From this perspective, theoretical advances
in cooperative RL can be naturally embedded into our frame-
work as promising directions for future research. On the other
hand, since our current work considers only the simplest
form of social norm, it is worth exploring which types of
norms most effectively foster collaboration. In summary, our
study provides a promising paradigm for bridging EGT and
MARL, offering both theoretical insights and practical tools
for building scalable and socially intelligent robotic systems.

ACKNOWLEDGMENT

This work is supported by the Beijing Natural Science
Foundation (grant no. 1244045).



[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]
(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7, no. 1, pp. 1-41, 2013.

R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in neural information processing systems, vol. 30,
2017.

K. Zhang, Z. Yang, and T. Bagar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” Handbook of rein-
forcement learning and control, pp. 321-384, 2021.

J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel,
“Multi-agent reinforcement learning in sequential social dilemmas,”
arXiv preprint arXiv:1702.03037, 2017.

W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus,
“Social behavior for autonomous vehicles,” Proceedings of the National
Academy of Sciences, vol. 116, no. 50, pp. 24 972-24 978, 2019.

J. M. Smith, “Evolution and the theory of games,” in Did Darwin get
it right? Essays on games, sex and evolution.  Springer, 1982, pp.
202-215.

M. A. Nowak, Evolutionary dynamics: exploring the equations of life.
Harvard university press, 2006.

——, “Five rules for the evolution of cooperation,” science, vol. 314,
no. 5805, pp. 1560-1563, 2006.

M. A. Nowak and K. Sigmund, “Evolution of indirect reciprocity by
image scoring,” Nature, vol. 393, no. 6685, pp. 573-577, 1998.

——, “Evolution of indirect reciprocity,” Nature, vol. 437, no. 7063, pp.
1291-1298, 2005.

A. Lupu and D. Precup, “Gifting in multi-agent reinforcement learning,”
in Proceedings of the 19th International Conference on autonomous
agents and multiagent systems, 2020, pp. 789-797.

F. Kong, Y. Huang, S.-C. Zhu, S. Qi, and X. Feng, “Learning to
balance altruism and self-interest based on empathy in mixed-motive
games,” Advances in Neural Information Processing Systems, vol. 37,
pp. 135819-135842, 2024.

E. Hughes, J. Z. Leibo, M. Phillips, K. Tuyls, E. Duefiez-Guzman,
A. Garcia Castafieda, I. Dunning, T. Zhu, K. McKee, R. Koster et al.,
“Inequity aversion improves cooperation in intertemporal social dilem-
mas,” Advances in neural information processing systems, vol. 31, 2018.
N. Anastassacos, J. Garcia, S. Hailes, and M. Musolesi, “Cooperation
and reputation dynamics with reinforcement learning,” arXiv preprint
arXiv:2102.07523, 2021.

M. Smit and F. P. Santos, “Learning fair cooperation in mixed-motive
games with indirect reciprocity,” arXiv preprint arXiv:2408.04549, 2024.
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

R. Willis, Y. Du, J. Z. Leibo, and M. Luck, “Quantifying the self-interest
level of markov social dilemmas,” arXiv preprint arXiv:2501.16138,
2025.



